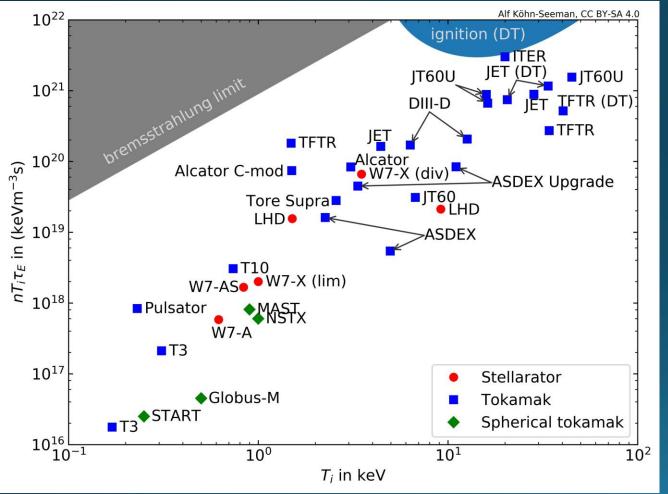
Modeling turbulence in tokamak plasmas with reservoir computing

Nathaniel Barbour Advisor: Professor Bill Dorland Department of Physics

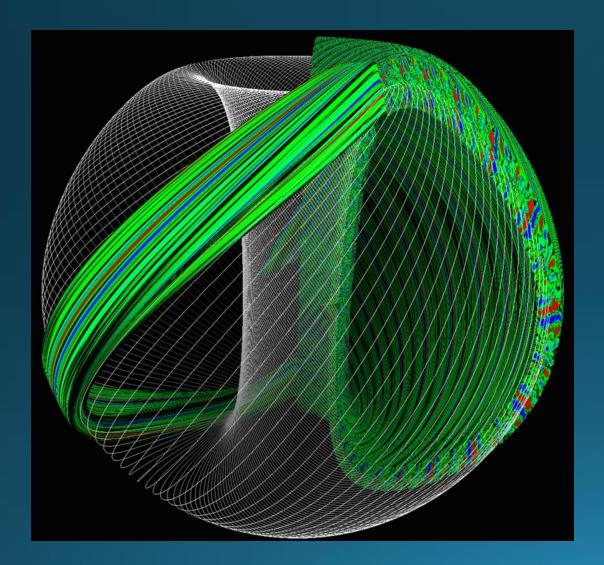
Lawson criterion / triple product



 nTτ = density * temperature * energy confinement time

- Ignition is a critical goal for fusion reactors.
- <u>Must increase τ to achieve</u> ignition
- Mitigate turbulence -> increase τ

GS2 domain



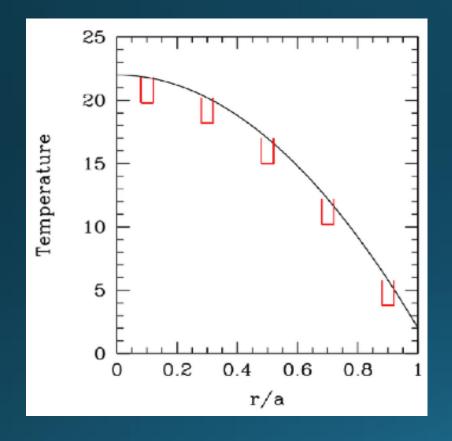
- Assume slow evolution of equilibrium profile compared to fluctuations
- Assume small correlation lengths
- 3 spatial dimensions, 2 velocity dimensions
- Domain restricted to flux tubes

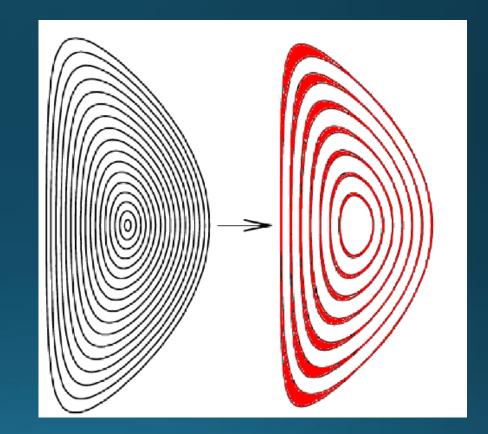
Multiscale modeling

- Turbulence simulation -> fast scale, computationally expensive
- Radial heat diffusion -> slow scale

- Confinement time ~0.25 s
- Turbulence modes ~0.0001 s

Heat flux





Guiding Physics Equation

$$\frac{\partial g_s}{\partial t} + \left[v_{ts} v_{\parallel} \hat{\mathbf{b}} + \langle \mathbf{v}_E \rangle + \frac{\tau_s}{Z_s} \mathbf{v}_d \right] \cdot \nabla h_s + \langle \mathbf{v}_E \rangle \cdot \nabla F_{Ms} - v_{ts} \mu \left(\hat{\mathbf{b}} \cdot \nabla B \right) \frac{\partial h_s}{\partial v_{\parallel}} = C(h_s)$$

- Electrostatic gyrokinetic equation
- Describes time evolution of gyrokinetic distribution
- Heat flux derived from radial velocity perturbation
- Can we find the heat flux without fully solving the GK equation?

Current standard for turbulence modeling

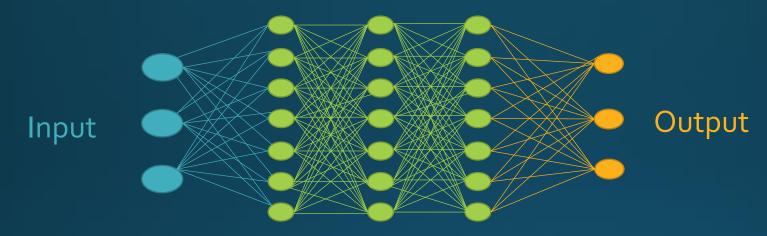
- GS2: W. Dorland et al. Phys. Rev. Lett. **85,** 5579 (2000).
 - Industry standard
 - Parallelized 5-D gyrokinetic code
- GX:
 - Unpublished but optimized and benchmarked
 - Orders of magnitude faster than GS2
- Trinity 1-D transport solver: M. Barnes Ph.D. Thesis (2008)
 - Extracts diffusion parameters from turbulence codes
 - Calculates heat flux

1-D Kuramoto-Sivashinsky (KS) Equation

 $u_t + u_{xxxx} + u_{xx} + uu_x = 0$

- u(x, t) is periodic on [0, L)
- Arises in plasma physics: trapped ion mode instabilities
- Quadratic nonlinear term
- Higher-order dissipation
- Nontrivial chaotic dynamics
- A long-wavelength limit of the equations in turbulence code

Traditional Artificial Neural Networks



Network

- Basic structure: feed-forward series of layers of neuron-like units.
- Artificial neurons receive weighted inputs and process into outputs.
- Weights between layers are optimized on a training set.
- Primarily used for pattern recognition or classification tasks

Recurrent neural networks

- Network weights updated with backpropagation through time
- Advantage: feedbacks permit system memory
- Disadvantage: higher training cost
- Useful for studying time series data

Reservoir Computer

- Recurrent ANN with distinctions such as:
 - Connections defined by random and sparse adjacency matrix.
 - Input and internal weights remain fixed.
- Advantages:
 - Simpler training process
 - Output parameters can quickly be reused at a later time.
- Disadvantages:
 - Like other ANN methods, black box
 - Reservoir size scales with problem size unfavorably

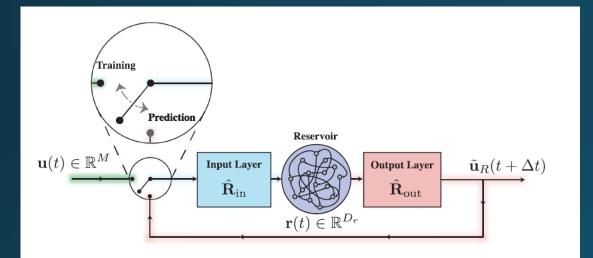
Project goals

- Implement reservoir using tensor library
- Train reservoir to predict future states of turbulent plasma
- Use reservoir to predict turbulent heat flux within a specified tolerance
- Determine if reservoir's time to solution is faster than GX alone

Reservoir Details

- Input of dimension M
- Network of D_R neuron units with sparse adjacency matrix **A**
- W_{in} Input coupling matrix of dimension $D_R \times M$
- W_{out} Output coupling matrix of dimension M x D_R^{-1}
- State vector $\mathbf{r}(t + \Delta t) = tanh[\mathbf{Ar}(t) + \mathbf{W}_{in}\mathbf{u}(t)]$

Reservoir-only approach

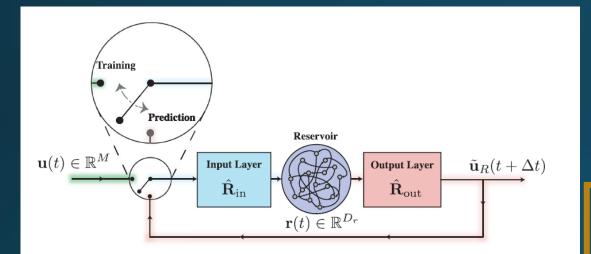


• **u**(t) : full GX solution

- \hat{R}_{in} : linear map to reservoir ANN
- Reservoir: recurrent neural network
- \hat{R}_{out} : linear map from reservoir to output

J. Pathak *et al.* Chaos **28**, 041101 (2018); https://doi.org/10.1063/1.5028373

Reservoir-only approach



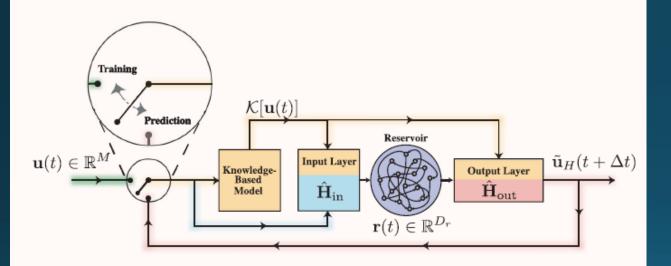
J. Pathak *et al.* Chaos **28,** 041101 (2018); https://doi.org/10.1063/1.5028373 • u(t) = full GX solution

- \hat{R}_{in} = linear map to reservoir ANN
- \hat{R}_{out} = linear map from reservoir to output
- Evolve reservoir state:

$$\mathbf{r}(t + \Delta t) = \tanh[\mathbf{Ar}(t) + \mathbf{W}_{in}\mathbf{u}(t)]$$

 Optimize output layer using Tikhonov-regularized linear regression

Hybrid reservoir approach



J. Pathak *et al.* Chaos **28,** 041101 (2018); https://doi.org/10.1063/1.5028373

- Allow u(t) to be the standard timestep for integration
- Knowledge-Based Model = GX running with less resolution
- In some cases, enables smaller reservoir -> faster training and solution

Verification

- 1-D Kuramoto-Sivashinsky Equation
 - Compare to published solutions from existing Matlab code
- 5-D gyrokinetic turbulence solution
 - Compare plasma states and turbulent heat fluxes to GX
- Will separately test input and output interfaces

Implementation

- C++
- CUDA
- cuTENSOR
- NVIDIA A100 Tensor Core GPU

AMSC 663 timeline

- October-early November:
 - Develop C++ solver for 1-D Kuramoto-Sivashinsky (KS) equation
 - Build solver using GX and verify
- Mid November December:
 - Implement reservoir using cuTENSOR
 - Train reservoir to predict 1-D KS states
 - Reproduce results of J. Pathak et al. Phys. Rev. Lett. 120, 024102 (2018).
 - Reproduce 1-D KS result from J. Jiang and Y. Lai. Phys. Rev. Research 1, 033056 (2019).

Alternative AMSC 663 timeline

- October-early November:
 - Develop C++ solver for 1-D Kuramoto-Sivashinsky (KS) equation
 - Build solver using GX and verify
- Mid November December:
 - Implement reservoir using cuTENSOR
 - Train reservoir to predict 1-D KS states
 - Reproduce results of J. Pathak et al. Phys. Rev. Lett. 120, 024102 (2018).
 - Reproduce 1-D KS result from J. Jiang and Y. Lai. Phys. Rev. Research 1, 033056 (2019).
- Still provides foundation for AMSC 664

AMSC 664 timeline

- February-early March:
 - Build reservoir for the 5-D gyrokinetic turbulence code GX
 - Calculate macroscopic average turbulent heat fluxes
 - Compare time to solution with direct numerical solution
- March-May:
 - If reservoir is faster, call reservoir from 1-D transport code Trinity
 - Benchmark solutions against existing codes
 - If reservoir is outside of tolerance, implement hybrid reservoir and test

Deliverables

- Proposal, progress reports, presentations
- Trained reservoirs
- C++/CUDA codes: documented and in Github
- Figures comparing time to solution for both methods
- Uncertainty estimates for reservoir solutions
- Sample input files

References

- M. Barnes. Ph.D. Thesis (2008) arxiv:0901.2868
- W. Dorland et al. Phys. Rev. Lett. **85,** 5579 (2000).
- J. Jiang and Y. Lai. *Phys. Rev. Research* **1**, 033056 (2019).
- J. Pathak et al. Chaos **28**, 041101 (2018).
- J. Pathak et al. *Phys. Rev. Lett.* **120**, 024102 (2018).

Additional slides

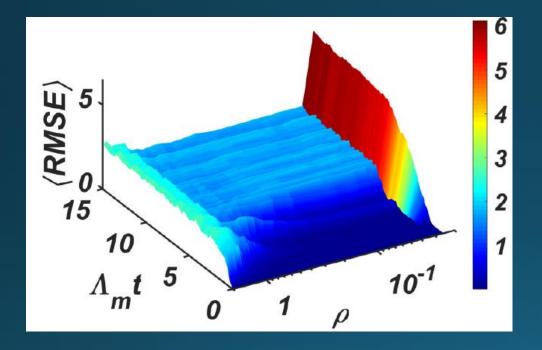
Training

- Tikhonov-Regularized Linear Regression
- Minimize:

$$\sum_{m=1}^{T/\Delta t} \|\mathbf{u}(-m\Delta t) - \widetilde{\mathbf{u}}_R(-m\Delta t)\|^2 + \beta \|\mathbf{W}_{\text{out}}\|^2$$

Regularization parameter to mitigate potential overfitting

Impact of spectral radius of reservoir network for 1-D KS equation



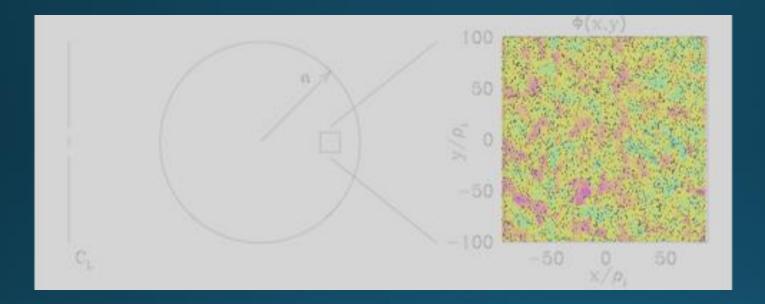
Jiang and Lai. Phys. Rev. Research **1**, 033056 (2019). DOI:10.1103/PhysRevResearch.1.033056

- Reservoir is scaled by a parameter to set the spectral radius.
- Spectral radius impacts ensembleaveraged RMSE
- Potential challenge for the 5-D gyrokinetic case

Advantages of magnetic fusion energy

- Baseload power supply replacement
- No CO₂ emission in power plant operation
- Safe waste product: helium
- Abundant fuel: water and lithium
- No risk of "meltdown"

Turbulence



- Simulate small-scale turbulence in the flux tube
- Mitigate turbulence -> increase confinement time τ